This document gives pertinent information concerning the reissuance of the Virginia Pollutant Discharge Elimination System (VPDES) permit listed below. This permit is being processed as a Minor, Industrial permit. The industrial wastewater and stormwater discharges result from the operation of a bulk petroleum fuel storage and distribution center. This permit action consists of updating the proposed effluent limits to reflect the current Virginia Water Quality Standards (effective January 6, 2011) and updating permit language as appropriate. The effluent limitations and special conditions contained in this permit will maintain the Water Quality Standards (WQS) of 9VAC25-260-00 et seq.

Facility Name and Mailing 1.

Address:

Kinder Morgan Southeast

Terminals, LLC - Newington 2

8206 Terminal Road Lorton, VA 22079

SIC Code:

4226 - Petroleum and

Chemical Bulk Stations and

Terminals for Hire

Facility Location:

8206 Terminal Road

Lorton, VA 22079

County:

Fairfax

Facility Contact Name:

Mr. Patrick Davis

Telephone Number:

(804) 743-5778

Facility E-mail Address:

JPatrick Davis@kindermorgan.com

Permit No.: 2.

VA0001988

Expiration Date of

previous permit:

March 27, 2015

Other VPDES Permits associated with this facility:

None

Other Permits associated with this facility:

Air – Registration Number 70234 (Title V)

Hazardous Waste - VAD000607986

E2/E3/E4 Status:

Not Applicable (NA)

Owner Name: 3.

Kinder Morgan Southeast Terminals, LLC

Owner Contact/Title:

Mr. Robert McKinley / Manger of Operations

Telephone Number:

(804) 743-5723

Owner E-mail Address:

Robert McKinley@kindermorgan.com

Application Complete Date: 4.

November 2014

Permit Drafted By:

Susan Mackert

Date Drafted:

August 18, 2015

Draft Permit Reviewed By:

Alison Thompson

Date Reviewed:

August 31, 2015

Public Comment Period:

Start Date:

October 3, 2015

End Date:

November 2, 2015

Receiving Waters Information: 5.

Receiving Stream Name:

Accotink Creek, UT

Stream Code:

1a-XNV

Drainage Area at Outfall:

< 5 square miles*

River Mile:

1.28

Stream Basin:

Potomac River

Subbasin:

Potomac River

Section:

7 b Stream Class: Waterbody ID: Ш

Special Standards:

VAN-A15R

7Q10 Low Flow:

0 MGD

7Q10 High Flow:

0 MGD

1Q10 Low Flow:

0 MGD

1Q10 High Flow:

0 MGD

30Q10 Low Flow:

0 MGD

30Q10 High Flow:

0 MGD

Harmonic Mean Flow:

0 MGD

30Q5 Flow:

0 MGD

^{*}Staff determined that the drainage area for Outfall 001 is less than five square miles. Based on a drainage area of five square miles or less, critical flows will be equal to zero.

. X	State Water C	ontrol Lav	v .	EPA Guidelines
X	- Clean Water A	Act	<u>x</u>	Water Quality Standards
X	VPDES Permi	it Regulati	on	Other
X	EPA National	Pollutant	Discharge Elimination System (NPDES) Regul	ation
Pelia	hility Class: NA			
Relia	bility Class: NA			
	ability Class: NA			
			Effluent Limited	Possible Interstate Effect
Perm	it Characterizatio		Effluent Limited - Water Quality Limited	Possible Interstate Effect Compliance Schedule Required
Perm	it Characterizatio	on: 		
Perm	it Characterization Private Federal	on:	- Water Quality Limited	Compliance Schedule Required

10. Wastewater Sources and Treatment Description:

The Kinder Morgan Newington 2 facility is a bulk petroleum storage and distribution terminal located on Terminal Road in Lorton, Virginia. The terminal receives gasoline, diesel, ethanol, and jet kerosene (Jet A) via petroleum pipelines which is then stored in numerous above ground storage tanks (ASTs) located within a diked area of the property. Fuel additives are received by bulk truck delivery. Final product is distributed by tanker truck.

Outfall 001

Stormwater is conveyed through storm drains, underground piping, or via overland flow to a retention pond at the southwest corner of the facility. Discharge from the retention pond is controlled by a manual discharge valve with ultimate discharge via Outfall 001. Stormwater flow from various sources is routed to the retention pond:

- The ASTs are located within a diked area. Stormwater is contained within this diked area by a manually operated gate valve that is maintained in the closed position. There are several drains within the AST area that all drain to the gate valve. Following inspection of the contained stormwater, the gate valve is manually opened and the stormwater is released via underground piping to an oil-water separator and then into the retention pond.
- The truck loading rack area is paved, covered, and surrounded by a low containment curb. Stormwater that may collect beneath the loading rack roof flows to separate drains within each truck bay which is connected to a lading rack sump pit. Any fluid collected in the sump is pumped via underground piping to an AST where it is sent offsite for recycling.
- > The paved areas on site consist of parking lots and vehicle traffic areas around the loading rack. Stormwater flow from the paved areas is collected in several drains and flows by gravity through underground piping to the oil-water separator and then into the retention pond. During large storm events, sheet flow from the parking are can bypass the oil-water separator and flow directly to the retention pond.

Internal Outfall 101

This outfall addresses the discharges from hydrostatic test waters associated with any of the tanks within the terminal to the retention pond. Subsequent to the submittal of the permit application, Kinder Morgan staff expressed interest in having this outfall removed with this reissuance noting that if a hydrostatic test is required, they will obtain coverage under *General VPDES Permit for Discharges from Petroleum Contaminated Sites, Groundwater Remediation and Hydrostatic Tests* (9VAC25-120 et seq.). It should be noted that this outfall has not discharged in the last three years.

Given this discharge source would continue to be covered under another VPDES permit, it is staff's best professional judgement that Internal Outfall 101 be removed with this reissuance. Staff believes there is no reasonable potential for the removal of this outfall to create any instream excursion of any applicable State narrative or numerical Water Quality Standard.

See Attachment 1 for the NPDES Permit Rating Worksheet.

See Attachment 2 for a facility schematic/diagram.

TABLE 1 – Outfall Description								
Outfall Number	Discharge Sources	Treatment	Flow	Outfall Latitude and Longitude				
001	Industrial Wastewater/Stormwater*	Sedimentation	0.03 MGD**	38° 43′ 52″ N 77° 11′ 38″ W				

^{*}While hydrostatic testing discharges will now be covered under a separate permit, the discharge from Outfall 001 may contain hydrostatic test water as a component.

11. Solids Treatment and Disposal Methods:

Kinder Morgan Newington 2 is an existing bulk petroleum fuel storage and distribution center that does not treat domestic sewage and does not produce sewage sludge.

12. Monitoring Stations and Discharges in Vicinity of Discharge:

The monitoring stations and facilities listed below are either located in or discharge to the following waterbody: VAN-A15R.

TABLE 2 – Monitoring Stations and Discharges								
1aACO002.50	DEQ ambient monitoring station at Route 1.							
1aACO004.84 DEQ ambient monitoring station at Route 611 (Telegraph Road).								
1aACO006.10 DEQ ambient monitoring station at Route 790.								
1aACO009.14	DEQ biological monitoring station upstream of Route 636 and Fairfax County Parkway.							
VA0001945	Kinder Morgan Southeast Terminals, LLC (Accotink Creek, UT)							
VA0002283 Motiva Enterprises, LLC – Fairfax (Crook Branch)								
VAG250126 AT&T Oakton Office Park (Accotink Creek, UT)								
VAG406519 Margaret Bardwell Residence (Accotink Creek, UT)								
VAG750224 Enterprise Rent A Car (Calamo Branch, UT)								
VAG750226	Enterprise Rent A Car (Accotink Creek, UT)							
VAG750238	Ravensworth Collision Center (Accotink Creek, UT)							
VAG110046	Newington Concrete (Accotink Creek, UT)							
VAG110069	Virginia Concrete - Mid Atlantic Materials (Accotink Creek, UT)							
VAR051042	SICPA Securink Corporation (Accotink Creek)							
VAR051047	Fairfax County - Connector Bus Yard (Long Branch)							
VAR051066	U.S. Postal Service - Merrifield (Long Branch, UT)							
VAR051080	U.S. Army - Fort Belvoir (Accotink Creek)							
VAR051565	Rolling Frito Lay Sales (Accotink Creek)							

^{**} Flow volume was confirmed with the facility subsequent to the application package being received. The flow shown above in Table 1 may differ from that found within the permit application.

TABLE 2 – Monitoring Stations and Discharges (Continued)						
VAR051719	National Asphalt Paving Company (Accotink Creek)					
VAR051770	Fairfax County – Jermantown Maintenance Facility (Accotink Creek)					
VAR051771	Fairfax County – Newington Maintenance Facility (Long Branch)					
VAR051772	Fairfax County – DVS – Alban Maintenance Facility (Field Lark Branch)					
VAR051795	HD Supply (Accotink Creek)					
VAR051863	United Parcel Service - Newington (Accotink Creek)					
VAR052188	Milestone Metals (Long Branch, UT)					
VAR052223	Newington Solid Waste Vehicle Facility (Long Branch, UT)					

13. Material Storage:

A current list of materials stored on site was provided by the facility as part of the permit application package. This information is found as Attachment 3.

14. Site Inspection:

Performed by Beth Biller on February 5, 2015, with Jennifer Carlson in attendance. The site memo can be found as Attachment 4.

15. Receiving Stream Water Quality and Water Quality Standards:

a. Ambient Water Quality Data

This facility discharges into an unnamed tributary to Accotink Creek, which has not been monitored or assessed. There is a downstream DEQ ambient monitoring station located on Accotink Creek. Station 1aACO004.84 is located at the Route 611 bridge crossing, approximately 1.32 miles downstream of Outfall 001. The following is the water quality summary for this segment of Accotink Creek, as taken from the 2012 Integrated Report:

Class III, Section 7, special standards - b.

DEQ monitoring stations located in this segment of Accotink Creek:

- Ambient monitoring station 1aACO002.50 at Route 1
- Ambient monitoring station 1aACO004.84 at Route 611 (Telegraph Road)
- Ambient monitoring station 1aACO006.10 at Route 790
- Biological monitoring station 1aACO009.14 upstream of Route 636 and Fairfax County Parkway

The fish consumption use is assessed as not supporting due to data collected previously at DEQ's fish tissue / sediment station at Route 611. Fish tissue data revealed exceedances of the water quality criterion based tissue value (TV) of 20 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue which were recorded in tissue from three species of fish (America eel, redbreast sunfish and rainbow trout) in 2004. Also, at station 1aACO002.50 in 2005, Semi Permeable Membrane Device (SPMD) data revealed an exceedance of the human health criteria of 0.63 parts per billion (ppb) polychlorinated biphenyls (PCBs), which is noted as an observed effect. Additionally, exceedances of the water quality criterion based tissue value (TV) for heptachlor epoxide and dieldrin were also noted by observed effects for the 2008 assessment. These observed effects will remain.

E. coli monitoring finds a bacterial impairment, resulting in an impaired classification for the recreation use. A bacterial Total Maximum Daily Load (TMDL) has been completed and Environmental Protection Agency (EPA) approved for this segment.

Biological monitoring finds benthic macroinvertebrate impairments, resulting in an impaired classification for the aquatic life use.

The wildlife use is considered fully supporting.

b. 303(d) Listed Stream Segments and Total Maximum Daily Loads (TMDLs)

Table 3 – Downstream Impairment Information (2012 Integrated Report)									
Waterbody Name	Impaired Use	Cause	Distance From Outfall	TMDL completed	Wasteload Allocation (WLA)	Basis for WLA	TMDL Schedule		
Accotink	Recreation	E. coli	1.20 miles	Lower Accotink Creek Watershed Bacteria TMDL 12/18/2008	None	Not expected to discharge pollutant			
Creek	Aquatic Life	Benthic Macroinvertebrates	1.28 miles	No			2016		
	Fish Consumption	PCBs		No			2022		
Pohick Bay*	Aquatic Life	pН	4.8 miles				2024		

^{*}Please note that in the draft 2014 Integrated Assessment, the tidal Accotink Bay segment (as well as Pohick Bay) is listed with a dissolved oxygen impairment for the aquatic life use. The Accotink Bay segment is located approximately 2.3 miles downstream of Outfall 001. The dissolved oxygen impairment will be covered by the completed TMDL for the Chesapeake Bay watershed; however the Bay TMDL and the WLAs contained within the TMDL are not addressed in this planning statement.

Significant portions of the Chesapeake Bay and its tributaries are listed as impaired on Virginia's 303(d) list of impaired waters for not meeting the aquatic life use support goal, and the 2012 Virginia Water Quality Assessment 305(b)/303(d) Integrated Report indicates that much of the mainstem Bay does not fully support this use support goal under Virginia's Water Quality Assessment guidelines. Nutrient enrichment is cited as one of the primary causes of impairment. EPA issued the Bay TMDL on December 29, 2010. It was based, in part, on the Watershed Implementation Plans developed by the Bay watershed states and the District of Columbia.

The Chesapeake Bay TMDL addresses all segments of the Bay and its tidal tributaries that are on the impaired waters list. As with all TMDLs, a maximum aggregate watershed pollutant loading necessary to achieve the Chesapeake Bay's water quality standards has been identified. This aggregate watershed loading is divided among the Bay states and their major tributary basins, as well as by major source categories [wastewater, urban stormwater, onsite/septic agriculture, air deposition]. Fact Sheet Section 17.d provides additional information on specific nutrient monitoring for this facility to implement the provisions of the Chesapeake Bay TMDL.

The full planning statement is found in Attachment 5.

c. Receiving Stream Water Quality Criteria

Part IX of 9VAC25-260(360-550) designates classes and special standards applicable to defined Virginia river basins and sections. The receiving stream, an unnamed tributary to Accotink Creek, is located within Section 7 of the Potomac River Basin, and classified as a Class III water.

At all times, Class III waters must achieve a dissolved oxygen (D.O.) of 4.0 mg/L or greater, a daily average D.O. of 5.0 mg/L or greater, a temperature that does not exceed 32°C, and maintain a pH of 6.0-9.0 standard units (S.U.).

Attachment 6 details other water quality criteria applicable to the receiving stream.

Ammonia:

The freshwater, aquatic life Water Quality Criteria for Ammonia are dependent on the instream and/or effluent temperature and pH. The 90th percentile temperature and pH values are used because they best represent the critical design conditions of the receiving stream. Because neither instream nor effluent data is available for temperature, staff utilized a default temperature value of 25°C. It is staff's best professional judgement that a default pH value of 8.0 S.U. is suitable to calculate the ammonia water quality standards in lieu of calculating the 90th percentile pH value from the facility's actual discharge data as ammonia, as N, is generally not a parameter of concern. This is due to the fact the discharge is industrial in nature and there is no reasonable potential to exceed the ammonia criteria. And as such, limit derivation is not warranted.

The ammonia water quality standards calculations are shown in Attachment 6.

Metals Criteria:

The Water Quality Criteria for some metals are dependent on the receiving stream's hardness (expressed as mg/L calcium carbonate). There is no Total Hardness data for this facility. Staff guidance suggests using a default hardness value of 50 mg/L CaCO₃ for streams east of the Blue Ridge. The hardness-dependent metals criteria in Attachment 6 are based on this default value.

d. Receiving Stream Special Standards

The State Water Control Board's Water Quality Standards, River Basin Section Tables (9VAC25-260-360, 370 and 380) designates the river basins, sections, classes, and special standards for surface waters of the Commonwealth of Virginia. The receiving stream, an unnamed tributary to Daniels Run, is located within Section 7 of the Potomac River Basin. This section has been designated with a special standard of "b".

Special Standard "b" (Potomac Embayment Standards) established effluent standards for all sewage plants discharging into Potomac River embayments and for expansions of existing plants discharging into non-tidal tributaries of these embayments. 9VAC25-415, Policy for the Potomac Embayments controls point source discharges of conventional pollutants into the Virginia embayment waters of the Potomac River, and their tributaries, from the fall line at Chain Bridge in Arlington County to the Route 301 Bridge in King George County. The Potomac Embayment Standards are not applied to this industrial discharge since the discharge does not contain the pollutants of concern in appreciable amounts.

16. Antidegradation (9VAC25-260-30):

All state surface waters are provided one of three levels of antidegradation protection. For Tier 1 or existing use protection, existing uses of the water body and the water quality to protect these uses must be maintained. Tier 2 water bodies have water quality that is better than the water quality standards. Significant lowering of the water quality of Tier 2 waters is not allowed without an evaluation of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters.

The receiving stream has been classified as Tier 1 because of the highly developed receiving stream watersheds in Fairfax County (Accotink Creek) and the District of Columbia metropolitan area (Potomac River), and the water quality impairments listed for Accotink Creek. The permit limits proposed have been established by determining wasteload allocations which will result in attaining and/or maintaining all water quality criteria which apply to the receiving streams, including narrative criteria. These wasteload allocations will provide for the protection and maintenance of all existing uses.

17. Effluent Screening, Wasteload Allocation, and Effluent Limitation Development:

To determine water quality-based effluent limitations for a discharge, the suitability of data must first be determined. Data is suitable for analysis if one or more representative data points is equal to or above the quantification level ("QL") and the data represent the exact pollutant being evaluated.

Next, the appropriate Water Quality Standards (WQS) are determined for the pollutants in the effluent. Then, the Wasteload Allocations (WLA) are calculated. In this case since the critical flows 7Q10 and 1Q10 have been determined to be zero, the WLA's are equal to the WQS. The WLA values are then compared with available effluent data to determine the need for effluent limitations. Effluent limitations are needed if the 97th percentile of the daily effluent concentration values is greater than the acute wasteload allocation or if the 97th percentile of the four-day average effluent concentration values is greater than the chronic wasteload allocation. Effluent limitations are based on the most limiting WLA, the required sampling frequency, and statistical characteristics of the effluent data.

a. Effluent Screening:

Effluent data obtained from the permit application and Discharge Monitoring Report (DMR) forms has been reviewed and determined to be suitable for evaluation. Effluent data from the current permit cycle were reviewed, and there have been no exceedances of the established limitations.

b. Mixing Zones and Wasteload Allocations (WLAs):

Wasteload allocations (WLAs) are calculated for those parameters in the effluent with the reasonable potential to cause an exceedance of water quality criteria. The basic calculation for establishing a WLA is the steady state complete mix equation:

	WLA	$=\frac{C_0[Q_e+(f)(Q_s)]-[(C_s)(f)(Q_s)]}{Q_e}$
Where:	WLA	= Wasteload allocation
	C_{o}	= In-stream water quality criteria
	Qe	= Design flow
	Q_s	= Critical receiving stream flow
		(1Q10 for acute aquatic life criteria; 7Q10 for chronic aquatic life criteria;
		30Q10 for ammonia criteria; harmonic mean for carcinogen-human health
		criteria; and 30Q5 for non-carcinogen human health criteria)
	f	= Decimal fraction of critical flow
	C_s	= Mean background concentration of parameter in the receiving stream.

The water segment receiving the discharge via Outfall 001 is considered to have a 7Q10 and 1Q10 of 0.0 MGD. As such, there is no mixing zone and the WLA is equal to the C_0 .

c. Effluent Limitations

9VAC25-31-220.D. requires limits be imposed where a discharge has a reasonable potential to cause or contribute to an instream excursion of water quality criteria. Those parameters with WLAs that are near effluent concentrations are evaluated for limits.

The VPDES Permit Regulation at 9VAC25-31-230.D requires that monthly and weekly average limitations be imposed for continuous discharges from Publicly Owned Treatment Works (POTW) and monthly average and daily maximum limitations be imposed for all other continuous non-POTW discharges.

1) Outfall 001

Total Petroleum Hydrocarbons:

The TPH maximum limit of 15 mg/L shall be carried forward with this permit reissuance. The limit is based on the ability of simple oil-water separator technology to recover free product from water. Wastewater discharged without a visible sheen is generally expected to meet this effluent limitation. The quarterly monitoring frequency (1/3M) for TPH shall be carried forward with this reissuance.

Total Suspended Solids (TSS):

The TSS maximum limit of 60 mg/L shall be carried forward with this permit reissuance. The limit is included with the permit to ensure proper operation and maintenance of the stormwater impoundment basin. The limit was derived from requirements at other industrial activities providing sedimentation of storm water runoff. The quarterly monitoring frequency (1/3M) for TPH shall be carried forward with this reissuance.

pH:

pH limitations are set at the water quality criteria. The quarterly monitoring frequency (1/3M) for pH shall be carried forward with this reissuance.

d. Nutrient Monitoring

EPA's Chesapeake Bay TMDL (December 29, 2010) included wasteload allocations for VPDES permitted industrial stormwater facilities as part of the regulated stormwater aggregate load. EPA used data submitted by Virginia with the Phase I Chesapeake Bay TMDL Watershed Implementation Plan (WIP), including the number of industrial stormwater permits per county and the number of urban acres regulated by industrial stormwater permits, as part of their development of the aggregate load. Aggregate loads for industrial stormwater facilities were appropriate because actual facility loading data were not available to develop individual facility wasteload allocations. Virginia estimated the loadings from industrial stormwater facilities using actual and estimated facility acreage information, and Total Phosphorus (TP), Total Nitrogen (TN), and Total Suspended Solids (TSS) loading values from the Northern Virginia Planning District Commission (NVPDC) Guidebook for Screening Urban Nonpoint Pollution Management Strategies, prepared for the Metropolitan Washington Council of Governments (November, 1979).

1) Outfall 001

Nutrients:

To protect the Water Quality Standards of the Chesapeake Bay and to address the benthic impairment in Accotink Creek, monitoring for Nitrate+Nitrite, Total Kjeldahl Nitrogen (TKN), Total Nitrogen (TN), and Total Phosphorus (TP) are proposed for this reissuance. Actual facility area information and the TP and TN data required in this section, as well as the TSS data required elsewhere in this permit, will be used by the Board to quantify the nutrient and sediment loads from VPDES permitted industrial stormwater facilities, and will be submitted to EPA to aid them in further refinements to their Chesapeake Bay TMDL model. The loading information will also be used by the board to determine any additional load reductions needed for industrial stormwater facilities for the next reissuance of this permit. A semi-annual monitoring frequency (1/6M), for a total of four sampling events, is proposed with this reissuance. See Part III of the permit for additional calculation and reporting requirements.

e. Effluent Limitations and Monitoring Summary

Limits were established for Total Suspended Solids, Total Petroleum Hydrocarbons, and pH.

Monitoring and/or reporting was established for Total Kjeldahl Nitrogen, Nitrate+Nitrite, Total Nitrogen, and Total Phosphorus.

The limits for Total Petroleum Hydrocarbons are based on the ability of simple oil-water separator technology to recover free product from water and Best Professional Judgement.

The limits for Total Suspended Solids are based on Best Professional Judgement.

Sample Type and Frequency are in accordance with the recommendations in the VPDES Permit Manual.

18. Antibacksliding:

a. Outfall 101

This outfall addresses the discharges from hydrostatic test waters associated with any of the tanks within the terminal to the retention pond. Staff believes there is no reasonable potential for the removal of this outfall to create any instream excursion of any applicable State narrative or numerical Water Quality Standard given this discharge source would continue to be covered under another VPDES permit, the General VPDES Permit for Discharges from Petroleum Contaminated Sites, Groundwater Remediation, and Hydrostatic Tests (9VAC25-120 et seq.).

19. Effluent Limitations/Monitoring Requirements: Outfall 001 (Retention Pond)

Average Flow: 0.03 MGD

Effective Dates: During the period beginning with the permit's effective date and lasting until the expiration date.

PARAMETER	BASIS FOR	R DISCHARGE LIMITATIONS				MONITORING REQUIREMENT		
	LIMITS	Monthly Average	Daily Maximum	Minimum_	Maximum	Frequency	Sample Type	
Flow (MGD)	NA	NL	NA	NA	NL	1/3M	Estimate	
рН	2	NA	NA	6.0 S.U.	9.0 S.U.	1/3M	Grab	
Total Suspended Solids (TSS)	1	NA	NA	NA	60 mg/L	1/3M	Grab	
Total Petroleum Hydrocarbons(TPH)(a)	1	NA	NA	NA .	15 mg/L	1/3M	Grab	
Total Nitrogen ^(b,c)	1	NA	NA	NA	NL (mg/L)	1/6M	Calculated	
Total Kjeldahl Nitrogen (TKN)(c)	1	NA	NA	NA	NL (mg/L)	1/6M	Grab	
Nitrate+Nitrite (NO ₂ +NO ₃) ^(c)	1	NA	NA	NA	NL (mg/L)	1/6M	Grab	
Total Phosphorus(c)	1	NA	NA	NA	NL (mg/L)	1/6M	Grab	
Acute Toxicity – C. dubia ^(NOAEC)	1	NA	NA	NA	NL(%)	1/YR	Grab	
Acute Toxicity – P. promelas ^(NOAEC)	1	NA	NA	NA	NL(%)	1/YR	Grab	
The basis for the limitations codes are:	M	MGD = Million gallons per day.				1/3M = Once every three months.		
 Best Professional Judgement 		NA = Not applicable.				1/6M = Once every six months.		
2. Water Quality Standards	:	NL = No limit; mor S.U. = Standard unit	•		1/\	R = Once every y	ear.	

^{1/3}M = The quarterly monitoring periods shall be January 1 - March 31, April 1 - June 30, July 1 - September 30 and October 1 - December 31. The DMR shall be submitted no later than the 10th day of the month following the monitoring period (April 10, July 10, October 10 and January 10, respectively).

1/6M = The semiannual monitoring periods shall be January through June and July through December. The DMR shall be submitted no later than the 10th day of the month following the monitoring period (July 10 and January 10, respectively).

Estimate = Reported flow is to be based on the technical evaluation of the sources contributing to the discharge.

Grab = An individual sample collected over a period of time not to exceed 15-minutes.

a. Total Petroleum Hydrocarbons (TPH) is the sum of individual gasoline range organics and diesel range organics or TPH-GRO and TPH-DRO to be measured by EPA SW 846 Method 8015 for gasoline and diesel range organics, or by EPA SW 846 Methods 8260 Extended and 8270 Extended.

Nutrient Requirements:

- b. Total Nitrogen is the sum of Total Kjeldahl Nitrogen and NO₂+NO₃ and shall be calculated from the results of those tests.
- c. Monitoring and reporting are only required during the first two years of the permit term (i.e., the first four monitoring periods).

20. Polychlorinated Biphenyls (PCBs):

Accotink Creek, which is located approximately 1.3 miles downstream from Outfall 001, is listed with a PCB impairment. This impairment was first listed in the 2010 Integrated Assessment. In support of the PCB TMDL that is scheduled for development by 2022, this facility is a candidate for PCB monitoring. The SIC code for this facility (4226) is not specifically identified in the PCB Monitoring Guidance (09-2001) as a facility type that is subject to PCB monitoring, however the guidance allows other industrial facilities to be identified for monitoring based on additional information or staff recommendations. Total PCB results have been generated from sampling conducted at VPDES permitted facilities statewide since 2009. PCB data from Petroleum Bulk Station and Terminal facilities indicate that effluent from these facilities has potential to contain PCBs in concentrations greater than the Virginia water quality criteria (640 pg/L). Based on this information, DEQ staff recommends that this facility perform low-level PCB monitoring during the upcoming permit cycle. It is recommended that this facility collect two samples using EPA Method 1668, which is capable of detecting low-level concentrations for all 209 PCB congeners. PCB data generated using Method 1668 revisions A, B, and C are acceptable; however, data generated using version A is preferred.

21. Other Permit Requirements:

- a. Part I.B of the permit contains quantification levels and compliance reporting instructions. 9VAC25-31-190.L.4.c. requires an arithmetic mean for measurement averaging and 9VAC25-31-220.D requires limits be imposed where a discharge has a reasonable potential to cause or contribute to an in-stream excursion of water quality criteria. Specific analytical methodologies for toxics are listed in this permit section as well as quantification levels (QLs) necessary to demonstrate compliance with applicable permit limitations or for use in future evaluations to determine if the pollutant has reasonable potential to cause or contribute to a violation. Required averaging methodologies are also specified.
- b. Permit Section Part I.C details the requirements for Whole Effluent Toxicity (WET) Program.

 The VPDES Permit Regulation at 9VAC25-31-210 requires monitoring and 9VAC25-31-220.I, requires limitations in the permit to provide for and assure compliance with all applicable requirements of the State Water Control Law and the Clean Water Act. A WET Program is imposed for municipal facilities with a design rate >1.0 MGD, with an approved pretreatment program or required to develop a pretreatment program, or those determined by the Board based on effluent variability, compliance history, IWC, and receiving stream characteristics. See Attachment 7 for a review of the most recent test results.

22. Other Special Conditions:

- a. O&M Manual Requirement. Required by Code of Virginia §62.1-44.19; VPDES Permit Regulation, 9VAC25-31-190.E and 40 CFR 122.41(e). The permittee shall maintain a current Operations and Maintenance (O&M) Manual. The permittee shall operate the facility in accordance with the O&M Manual and shall make the O&M Manual available to Department personnel for review upon request. Any changes in the practices and procedures followed by the permittee shall be documented in the O&M Manual within 90 days of the effective date of the changes. Non-compliance with the O&M Manual shall be deemed a violation of the permit.
- b. Water Quality Criteria Reopener. The VPDES Permit Regulation at 9VAC25-31-220 D. requires establishment of effluent limitations to ensure attainment/maintenance of receiving stream water quality criteria. Should effluent monitoring indicate the need for any water quality-based limitations, this permit may be modified or alternatively revoked and reissued to incorporate appropriate limitations.
- c. <u>Notification Levels</u>. Required by VPDES Permit Regulation 9VAC-31-200A for all manufacturing, commercial, mining, and silvacultural discharges. The permittee shall notify the Department as soon as they know or have reason to believe:
 - 1. That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant which is not limited in this permit, if that discharge will exceed the highest of the following notification levels:
 - (a) One hundred micrograms per liter;
 - (b) Two hundred micrograms per liter for acrolein and acrylonitrile; five hundred micrograms per liter for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter for antimony;
 - (c) Five times the maximum concentration value reported for that pollutant in the permit application; or (d) The level established by the Board.
 - 2. That any activity has occurred or will occur which would result in any discharge, on a nonroutine or infrequent basis, of a toxic pollutant which is not limited in this permit, if that discharge will exceed the highest of the following notification levels:
 - (a) Five hundred micrograms per liter;

- (b) One milligram per liter for antimony;
- (c) Ten times the maximum concentration value reported for that pollutant in the permit application; or
- (d) The level established by the Board.
- d. <u>Materials Handling/Storage</u>. 9VAC25-31-50 A prohibits the discharge of any wastes into State waters unless authorized by permit. Code of Virginia §62.1-44.16 and §62.1-44.17 authorize the Board to regulate the discharge of industrial waste or other waste.
- e. Oil Storage Ground Water Monitoring Reopener. As this facility currently manages ground water in accordance with 9VAC25-90-10 et seq., Oil Discharge Contingency Plans and Administration Fees for Approval, this permit does not presently impose ground water monitoring requirements. However, this permit may be modified or alternately revoked and reissued to include ground water monitoring not required by the ODCP regulation.
- f. No Discharge of Detergents, Surfactants, or Solvents to the Oil/Water Separators. This special condition is necessary to ensure that the oil/water separators' performance is not impacted by compounds designed to emulsify oil. Detergents, surfactants, and some other solvents will prohibit oil recovery by physical means.
- g. Oil Storage Ground Water Monitoring Reopener. As this facility currently manages ground water in accordance with 9VAC25-90-10 et seq., Oil Discharge Contingency Plans (ODCP) and Administration Fees for Approval, this permit does not presently impose ground water monitoring requirements. However, this permit may be modified or alternately revoked and reissued to include ground water monitoring not required by the ODCP regulation.
- h. <u>PCB Monitoring</u>. This special condition requires the permittee to conduct PCB monitoring using ultra-low level PCB analysis to support the development of the PCB TMDL for the fish consumption use impairment in Accotink Creek.
- i. <u>TMDL Reopener</u>. This special condition is to allow the permit to be reopened if necessary to bring it in compliance with any applicable TMDL that may be developed and approved for the receiving stream.

<u>Permit Section Part II.</u> Required by VPDES Regulation 9VAC25-31-190, Part II of the permit contains standard conditions that appear in all VPDES Permits. In general, these standard conditions address the responsibilities of the permittee, reporting requirements, testing procedures and records retention.

Permit Section Part III. Details Industrial Stormwater Management Requirements. Industrial storm water discharges may contain pollutants in quantities that could adversely affect water quality. Storm water discharges which are discharged through a conveyance or outfall are considered point sources and require coverage by a VPDES permit. The primary method to reduce or eliminate pollutants in storm water discharges from an industrial facility is through the use of best management practices (BMPs). Storm Water Management Plan requirements are derived from the VPDES General Permit for Storm Water Discharges Associated with Industrial Activity, 9VAC25-151 et seq.

23. Changes to the Permit from the Previously Issued Permit:

- a. Special Conditions:
 - 1. The O&M special condition has been revised to be consistent with current agency practice.
 - 2. The Hydrostatic Testing special condition was removed with this reissuance. The permittee shall obtain coverage under the General VPDES Permit for Discharges from Petroleum Contaminated Sites, Groundwater Remediation, and Hydrostatic Tests if hydrostatic testing is required.
 - 3. A No Discharge of Detergents, Surfactants, or Solvents to the Oil/Water Separators special condition was added with this reissuance to be consistent with permits issued to bulk terminal facilities.
 - 4. An Oil Storage Ground Water Monitoring Reopener special condition was added with this reissuance to be consistent with permits issued to bulk terminal facilities.
 - 5. A PCB sampling special condition was added with this reissuance.

b. Monitoring and Effluent Limitations:

- 1. Monitoring for Total Kjeldahl Nitrogen, Nitrate+Nitrite, and Total Phosphorus has been added to Outfall 001.
- 2. Reporting of Total Nitrogen has been added to Outfall 001.
- 3. Internal Outfall 101, and all associated requirements, has been removed from the permit. Coverage shall be obtained under the General VPDES Permit for Discharges from Petroleum Contaminated Sites, Groundwater Remediation, and Hydrostatic Tests.
- 4. Toxicity Monitoring Program (TMP) language has been changed to Whole Effluent Toxicity (WET) testing to be consistent with current agency practice.
- 5. The WET requirement for alternating species was removed with this reissuance to be consistent with current agency practice. Annual acute toxicity testing using both test species, *C. dubia and P. promelas*, was implemented with this reissuance.

c. Other:

1. Stormwater language was updated to reflect that found within the 2014 – 2019 General VPDES Permit for Storm Water Discharges Associated with Industrial Activity.

24. Variances/Alternate Limits or Conditions: NA

25. Public Notice Information:

First Public Notice Date: October 2, 2015

Second Public Notice Date: October 9, 2015

Public Notice Information is required by 9VAC25-31-280 B. All pertinent information is on file and may be inspected, and copied by contacting the: DEQ Northern Regional Office, 13901 Crown Court, Woodbridge, VA 22193, Telephone No. (703) 583-3853, susan.mackert@deq.virginia.gov. See Attachment 8 for a copy of the public notice document.

Persons may comment in writing or by email to the DEQ on the proposed permit action, and may request a public hearing, during the comment period. Comments shall include the name, address, and telephone number of the writer and of all persons represented by the commenter/requester, and shall contain a complete, concise statement of the factual basis for comments. Only those comments received within this period will be considered. The DEQ may decide to hold a public hearing, including another comment period, if public response is significant and there are substantial, disputed issues relevant to the permit. Requests for public hearings shall state 1) the reason why a hearing is requested; 2) a brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit; and 3) specific references, where possible, to terms and conditions of the permit with suggested revisions. Following the comment period, the Board will make a determination regarding the proposed permit action. This determination will become effective, unless the DEQ grants a public hearing. Due notice of any public hearing will be given. The public may request an electronic copy of the draft permit and fact sheet or review the draft permit and application at the DEQ Northern Regional Office by appointment.

26. Additional Comments:

Previous Board Action(s): None

Staff Comments: None

Public Comment: No comments were received during the public notice.

Fact Sheet Attachments - Table of Contents

Kinder Morgan Newington 2 VA0001988

2015 Reissuance

Attachment 1

NPDES Permit Rating Worksheet

Attachment 2

Flow Diagrams

Attachment 3

Material Storage

Attachment 4

Site Visit Memorandum

Attachment 5

Planning Statement

Attachment 6

Wasteload Allocation Analysis

Attachment 7

Toxicity Review

Attachment 8

Public Notice

							X	Regular Addition		
								Discretionary Addi	tion	
VPI	DES NO. :	VA00019	988					Score change, but	no status Cha	nge
	-							Deletion		
Faci	lity Name:	Kinder M	forgan Soเ	utheast Termin	als, LLC - N	ewington 2		i.		
	/ County:	Lorton /	Fairfax							
•	ing Water:	Accotink	Creek, U							
	erbody ID:	VAN-A1	5R							
							•			
	ility a steam ele le following cha			=4911) with one	or Is this	permit for a mu tion greater tha		al separate storm se 0.000?	wer serving a	
	tput 500 MW or g			ng pond/lake)		S; score is 700				
	r power Plant	J. 40.10. (3	,	├	(continue)	, ,	,		
	•	reater than	25% of the re	ceiving stream's 7	لحصا	, (
	score is 600 (st	on here)	x NO: (continue)						
	score is ooo (st	op nere)	110, (sontinge)						
FACTO	R 1: Toxic F	Poliutan	t Potenti	al						
PCS SIC		O.I.a.ta.i.		Sic Code: 42	26	Other Sic Cod	les:			
	Subcategory C	ode: 00	00		00 if no subca	tegory)			 -	
				 `						
Determine	the Toxicity po	otential fro	m Appendix	A. Be sure to u	ise the TOTAL	toxicity potent	ial co	lumn and check one	;)	
Toxicity	Group Co	de Poir	nts	Toxicity Grou	ip Code	Points		Toxicity Group	Code	Points
x No pro	cess streams) 0		3.	3	15		7.	7	35
waste	sueams			لـــا				لـــا		
1.	1	5		4.	4	20		8.	8	40
2.	2	2 10)	5.	5	25		9.	9	45
				<u></u>						
				6.	6	30		10.	10	50
								Code Number C	hookod:	0
										0
								Total Points Fa	actor 1:	
EACTO	D 2. Flow/S	teaam E	low Volu	me (Complete	aithar Castian	A or Section B	· aha	ok only one)		
FACIO	K 2: FIUW/5	ureaiii F	iow voiu	me (Complete	either Section	A OI Section b	, Cite	ak only one)		
Section A	- Wastewater	Flow Only	considered			Section B - V	Vaste	water and Stream F	low Considered	d
	/astewater Typ		Cod	e Points		ewater Type	F	Percent of Instream Wa	istewater Concer ream Low Flow	ntration at
Type i:	see Instructions Flow < 5 MG			0	(see	nstructions)		Receiving St	Code	Points
Type 1.	Flow 5 to 10		12	10	т	ype I/III:		< 10 %	41	0
	Flow > 10 to		13	20	•	ype min.		10 % to < 50 %	42	10
	Flow > 50 MC		14	30				> 50%	43	20
					_			L		
Type II:	Flow < 1 MG		x 21	10		Гуре II:		< 10 %	51	0
	Flow 1 to 5 M		22	20				10 % to < 50 %	52	20
	Flow > 5 to 1		23	30				> 50 %	53	30
	Flow > 10 MC	3 D	24	50						
Type III:	Flow < 1 MG	D	31	0	·					
34×	Flow 1 to 5 M		32	10						
	Flow > 5 to 1		33	20						
	Flow > 10 M(34	30						
		_								
							Co	de Checked from Se	ection A or B:	21
								Total Poir	nts Factor 2:	10

FACTOR 3: Conventional Pollutants

(only when limited by the permit) BOD COD Other: NA A. Oxygen Demanding Pollutants: (check one) Permit Limits: (check one) Code **Points** 0 < 100 lbs/day 1 100 to 1000 lbs/day 2 5 15 > 1000 to 3000 lbs/day 3 20 > 3000 lbs/day Code Number Checked: **Points Scored:** n B. Total Suspended Solids (TSS) Permit Limits: (check one) Code **Points** 0 < 100 lbs/day 1 100 to 1000 lbs/day 2 5 15 > 1000 to 5000 lbs/day 3 20 > 5000 lbs/day Code Number Checked: **Points Scored:** C. Nitrogen Pollutants: (check one) Ammonia Other: NA **Points** Permit Limits: (check one) Nitrogen Equivalent Code < 300 lbs/day 0 300 to 1000 lbs/day 5 2 > 1000 to 3000 lbs/day 3 15 > 3000 lbs/day 20 Code Number Checked: NA **Points Scored:** 0 **Total Points Factor 3:** 0 **FACTOR 4: Public Health Impact** Is there a public drinking water supply located within 50 miles downstream of the effluent discharge (this include any body of water to which the receiving water is a tributary)? A public drinking water supply may include infiltration galleries, or other methods of conveyance that ultimately get water from the above reference supply. YES; (If yes, check toxicity potential number below) NO; (If no, go to Factor 5) Determine the Human Health potential from Appendix A. Use the same SIC doe and subcategory reference as in Factor 1. (Be sure to use the Human Health toxicity group column - check one below) **Toxicity Group Toxicity Group** Code **Points Toxicity Group** Code **Points** Code **Points** No process 0 3 0 7. 7 15 0 waste streams 0 4 0 8. 20 1 9. 9 25 0 5 5 10 30 6. 6 10 10. Code Number Checked: **Total Points Factor 4:**

FACTOR 5: Water Quality Factors

A. Is (or will) one or more of the effluent discharge limits based on water quality factors of the receiving stream (rather than technology-base federal effluent guidelines, or technology-base state effluent guidelines), or has a wasteload allocation been to the discharge

	Code	Points
YES	1	10
x NO	2	0

B. Is the receiving water in compliance with applicable water quality standards for pollutants that are water quality limited in the permit?

	Code	Points
x YES	1	0
NO	2	5

C. Does the effluent discharged from this facility exhibit the reasonable potential to violate water quality standards due to whole effluent toxicity?

YES	Code 1				Points 10					
x NO	2				0					
Code Number Checked: Points Factor 5:	A A	2 0	- - -	ВВ	0	- +	c c	2 0	- - = -	0

FACTOR 6: Proximity to Near Coastal Waters

A. Base Score: Enter flow code here (from factor 2) 21

Check a	ppropriate fa	cility HPRI code	(from PCS):	Enter the multiplication factor that corre	sponds to the flow code:
	HPRI#	Code	HPRI Score	Flow Code	Multiplication Factor
	1	1	20	11, 31, or 41	0.00
				12, 32, or 42	0.05
	2	2	0	13, 33, or 43	0.10
—				14 or 34	0.15
x	3	3	30	21 or 51	0.10
				22 or 52	0.30
	4	4	0	23 or 53	0.60
				24	1.00
	5	5	20		
HP	RI code chec	cked: 3	•		
Base So	ore (HPRI S	core): 30	Х (Multiplication Factor) 0.1 =	3

B. Additional Points - NEP Program

For a facility that has an HPRI code of 3, does the facility discharge to one of the estuaries enrolled in the National Estuary Protection (NEP) program (see instructions) or the Chesapeake Bay?

C. Additional Points – Great Lakes Area of Concern For a facility that has an HPRI code of 5, does the facility discharge any of the pollutants of concern into one of the Great Lakes' 31 areas of concern (see instructions)?

	Code	Points						Code		Points			
×	1	10						1		10			
	2	0						2		0			
	Co	ode Number Checked:	Α	3		В	1		C	NA	_		
		Points Factor 6:	Α	30	+	В	10	_ +	С	0	_ = _	40	_

SCORE SUMMARY

<u>Fac</u>	<u>tor</u>	Description	Total P	<u>oints</u>
1		Toxic Pollutant Potential	0	
2	2	Flows / Streamflow Volume	10	·· ·
3	3	Conventional Pollutants	0	·
4	l .	Public Health Impacts	0	
5	i i	Water Quality Factors	0	
E	В	roximity to Near Coastal Waters	40	
		TOTAL (Factors 1 through 6)	50	to the second
S1. Is the total sco	re equal to or grater than 80	YES; (Facility is a Major)	x NO	1
S2. If the answer t	o the above questions is no, v	would you like this facility to be discretionary m	najor?	
X NO YES; (Add Reason NEW SCORE: OLD SCORE:	500 points to the above score: 50 50 50	e and provide reason below:		
		Permit Reviewer's I	-	Susan Mackert
		Phone N	-	(703) 583-3853
			Date: _	August 18, 2015

KINDER MORGAN SOUTHEAST TERMINALS, LLC NEWINGTON 2 TERMINAL

8206 TERMINAL ROAD LORTON, VIRGINIA

PROCESS FLOW DIAGRAM

Attachment 2 Page 2 of 2

Aboveground Storage Tank Summary VPDES Permit Renewal Application Kinder Morgan Newington 2 Terminal Lorton, VA

Tank ID	Substance Stored	Maximum Capacity (Gallons)
1	Ethanol	789,190
2	Gasoline	2,695,140
3	Ethanol	630,677
4	ULSD	1,391,303
5	Jet A	1,695,676
6	Gasoline	3,448,703
7	Gasoline	1,763,325
8	Jet A	2,380,638
9	Jet A	2,295,451
10	Gasoline	3,682,298
11	Empty	7,980
. 12	Additive	22,680
13	Empty	20,706
14	Empty	4,200
15	Jet De-icer	1,450
16	Gasoline Additive	12,096
18	Lubricity	2,500
19	Empty	225
20	Empty	1,500
W1	Contact Water	29,610
S1	Interface	18,228

MEMORANDUM

VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY

NORTHERN REGIONAL OFFICE

13901 Crown Court

Woodbridge, VA 22193

SUBJECT:

VA0001988 - Kinder Morgan Newington Terminal 2

TO:

File

FROM:

Beth Biller

DATE:

February 18, 2015

A site visit was performed on February 5, 2015, to verify information provided in application for permit reissuance received October 20, 2014 and familiarize myself with the facility as the new permit writer. Patrick Davis, EHS Specialist, Tetra Tech and Robert Chennis, Terminal Manager provided Jennifer Carlson, DEQ-NRO Water Resources Planner and I a tour of the facility.

- ⇒ Kinder Morgan Southeast Terminal LLC purchased the 8206 Terminal Road facility from Motiva in late 2011.
- The facility is a petroleum product distribution terminal consisting of 9 Above Ground Storage Tanks (ASTs) that receive product from the Plantation Pipeline.
- The ASTs are located in a graveled dike area. There is one drain located in the dike area (photo 1) that is manually controlled to release storm water to the oil/water separator. An alert light is triggered in the dike area as well as the operations office when the valve is opened.
- The paved fuel loading area (photo 3) contains 4 bottom loading racks that are undercover. Any runoff flows to central drains that are connected to a sump pit.
- ⇒ The sump pit contains a holding tank and a water tank which is pumped and hauled off site.
- There is a storm water drop inlet (photo 4) that will catch sheet flow from the loading racks and parking area. The storm water inlet flows to the oil/water separator.
- ⇒ Storm water and wastewater flow to the oil/water separator (photo 5). The pump is manually operated to remove oil that is removed and stored in an adjacent underground storage tank (UST).
- ⇒ Storm water and oil/water separator discharge enter the eastern side of the pond (photos 6-7).
- ⇒ Effluent from the pond discharges to a rip-rap lined bank that flows to a concrete culvert (Photos 9-10).
- ⇒ The culvert flows under Terminal Road which houses numerous industrial business and eventually daylights just east of the CSX railroad tracks and the Interstate 95/Fairfax County Parkway Intersection.

Attachment 4 Page 2 of 3

5) Oil/Water Separator

6) Storm Water Pond

7) Storm Water Pond Inlet

8) Storm Water Pond Outlet

9) Discharge Pipe to Outfall 001

10) Outfall 001

11) Discharge to UT

To:

Susan Mackert

From:

Jennifer Carlson

Date:

August 20, 2015

Subject:

Planning Statement for Kinder Morgan Newington 2 Terminal

Permit Number:

VA0001988

Information for Outfall 001:

Discharge Type: Intermittent, manual control

Discharge Flow: 0.30 MGD Avg

Receiving Stream: Accotink Creek, UT Latitude / Longitude: 38 43 52/-77 11 38

Rivermile: 1.28 miles Streamcode: 1aXNV Waterbody: VAN-A15R

Water Quality Standards: Class III, Section 7, special stds. b

Drainage Area: < 5 mi²

Please provide water quality monitoring information for the receiving stream segment. If there is not
monitoring information for the receiving stream segment, please provide information on the nearest
downstream monitoring station, including how far downstream the monitoring station is from the outfall.

This facility discharges into an unnamed tributary to Accotink Creek, which has not been monitored or assessed. There is a downstream DEQ ambient monitoring station located on Accotink Creek. Station 1aACO004.84 is located at the Route 611 bridge crossing, approximately 1.32 miles downstream of Outfall 001. The following is the water quality summary for this segment of Accotink Creek, as taken from the 2012 Integrated Report:

Class III, Section 7, special stds. b.

DEQ monitoring stations located in this segment of Accotink Creek:

- Ambient monitoring station 1aACO002.50, at Route 1
- Ambient monitoring station 1aACO004.84, at Route 611 (Telegraph Road)
- Ambient monitoring station 1aACO006.10, at Route 790
- Biological monitoring station 1aACO009.14, upstream of Route 636 and Fairfax County Parkway

The fish consumption use is assessed as not supporting due to data collected previously at DEQ's fish tissue/sediment station 1aACO004.86, at Route 611. Fish tissue data revealed exceedances of the water quality criterion based tissue value (TV) of 20 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue were recorded in tissue from 3 species of fish (America eel, redbreast sunfish and rainbow trout) in 2004. Also, at station 1aACO002.50 in 2005, Semipermeable Membrane Device (SPMD) data revealed an exceedance of the human health criteria of 0.64 parts per billion (ppb) polychlorinated biphenyls (PCBs), which is noted by an observed effect. Additionally, exceedances of the water quality criterion based tissue value (TV) for heptachlor

epoxide and dieldrin were also noted by observed effects for the 2008 assessment. These observed effects will remain.

E. coli monitoring finds a bacterial impairment, resulting in an impaired classification for the recreation use. A bacteria TMDL has been completed and EPA approved for this segment.

Biological monitoring finds benthic macroinvertebrate impairments, resulting in an impaired classification for the aquatic life use.

The wildlife use is considered fully supporting.

2. Does this facility discharge to a stream segment on the 303(d) list? If yes, please fill out Table A.

No.

3. Are there any downstream 303(d) listed impairments that are relevant to this discharge? If yes, please fill out Table B.

Yes.

Table B. Information on Downstream 303(d) Impairments and TMDLs

Waterbody Name	Impaired Use	Cause	Distance From Outfall	TMDL completed	WLA	Basis for WLA	TMDL Schedule
Impairment	Information in t	he 2012 Integrated R	eport	A			
Accotink Creek	Recreation	E. coli	1.28 miles	Lower Accotink Creek Watershed Bacteria TMDL 12/18/2008	None	Not expected to discharge pollutant	
	Aquatic Life	Benthic Macroinvertebrates		No			2016
	Fish Consumption	PCBs		No			2022
Pohick Bay*	Aquatic Life	рН	4.8 miles	No			2024

^{*} Please note that in the Draft 2014 Integrated Assessment, the tidal Accotink Bay segment (as well as Pohick Bay) is listed with a dissolved oxygen impairment for the aquatic life use. The Accotink Bay segment is located approximately 2.3 miles downstream of Outfall 001. The dissolved oxygen impairment will be covered by the completed TMDL for the Chesapeake Bay watershed; however, the Bay TMDL and the WLAs contained within the TMDL are not addressed in this planning statement.

4. Is there monitoring or other conditions that Planning/Assessment needs in the permit?

Accotink Creek, which is located approximately 1.3 miles downstream from Outfall 001 is listed as impaired for benthic macroinvertebrates with a TMDL currently under development. Because this industrial facility is located within five miles upstream from a benthic impairment, it is a candidate for

nutrient monitoring. DEQ staff has concluded that the nutrient monitoring that will be required of this facility to meet Chesapeake Bay nutrient monitoring requirements is sufficient; additional nutrient monitoring will not be requested.

The same downstream segment of Accotink Creek was first listed with a PCB impairment in the 2010 Integrated Assessment. In support of the PCB TMDL that is scheduled for development by 2022, this industrial facility is a candidate for PCB monitoring. The SIC code for this facility (4226) is not specifically identified in the PCB Monitoring Guidance (09-2001) as a facility type that is subject to PCB monitoring, however the guidance allows other industrial facilities to be identified for monitoring based on additional information or staff recommendations. Total PCB results have been generated from sampling conducted at VPDES permitted facilities statewide since 2009. PCB data from Petroleum Bulk Station and Terminal facilities indicate that effluent from these facilities have the potential to contain PCBs in concentrations greater than the Virginia water quality criteria (640 pg/L). Based on this information, DEQ staff recommends that this facility perform low-level PCB monitoring during the upcoming permit cycle. It is recommended that this facility collect two samples using EPA Method 1668, which is capable of detecting low-level concentrations for all 209 PCB congeners. PCB data generated using Method 1668 revisions A, B, and C are acceptable; however, data generated using version A is preferred.

5. Fact Sheet Requirements – Please provide information regarding any drinking water intakes located within a 5 mile radius of the discharge point.

There are no public water supply intakes located within 5 miles of this discharge.

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Facility Name:

Kinder Morgan Newington 2

Permit No.: VA0001988

Receiving Stream:

Accotink Creek, UT

Version: OWP Guidance Memo 00-2011 (8/24/00)

Mean Hardness (as CaCO3) =	mg/L
90% Temperature (Annual) =	deg C
90% Temperature (Wet season) =	deg C
90% Maximum pH =	SU
10% Maximum pH =	SU
Tier Designation (1 or 2) =	1
Public Water Supply (PWS) Y/N? =	n
Frout Present Y/N? =	n
Early Life Stages Present Y/N? =	у

Stream Flows		
1Q10 (Annual) =	0	MGD
7Q10 (Annual) =	0	MGD
30Q10 (Annual) =	0	MGD
1Q10 (Wet season) =	0	MGD
30Q10 (Wet season)	0	MGD
30Q5 =	0	MGD
Harmonic Mean =	0	MGD

Mixing Information		
Annual - 1Q10 Mix =	100	%
- 7Q10 Mix =	100	%
- 30Q10 Mix =	100	%
Wet Season - 1Q10 Mix =	100	%
- 30Q10 Mix =	100	%

Effluent Information	
Mean Hardness (as CaCO3) = 50	mg/L
90% Temp (Annual) = 25	deg C
90% Temp (Wet season) =	deg C
90% Maximum pH = 8	SU
10% Maximum pH =	SU
Discharge Flow = 0.03	MGD

Parameter	Background		Water Quali	ity Criteria			Wasteload	Allocations		,	Antidegrada	tion Baseline		A	ntidegradat	ion Allocations			Most Limitir	ng Allocations	3
(ug/l unless noted)	Conc.	Acute	Chronic I	HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	нн
Acenapthene	0	-		na	9.9E+02	-	-	na	9.9E+02					-		-	-			na	9.9E+02
Acrolein	0		-	na	9.3E+00	-		na	9.3E+00							-		-		na	9.3E+00
Acrylonitrile ^C	0			na	2.5E+00	-		na	2.5E+00							***		-		na	2.5E+00
Aldrin ^C	0	3.0E+00		na	5.0E-04	3.0E+00		na	5.0E-04		_		-					3.0E+00		na	5.0E-04
Ammonia-N (mg/l)																		0.445.00	4.045.00		
(Yearly) Ammonia-N (mg/l)	0	8.41E+00	1.24E+00	na		8.41E+00	1.24E+00	na		-				_				8.41E+00	1.24E+00	na	-
(High Flow)	0	8.41E+00	2.43E+00	na		8.41E+00	2.43E+00	na						-				8.41E+00	2.43E+00	na	
Anthracene	0			na	4.0E+04	-		na	4.0E+04	-	-	-		-	-			-		na	4.0E+04
Antimony	0			na	6.4E+02			na	6.4E+02	-				-		-				na	6.4E+02
Arsenic	0	3.4E+02	1.5E+02	na		3.4E+02	1.5E+02	na						-		***		3.4E+02	1.5E+02	na	-
Barium	0			na				na								-	-		**	na	-
Benzene ^C	0	-		na	5.1E+02		-	na	5.1E+02											na	5.1E+02
Benzidine ^C	0	-		na	2.0E-03	-		na	2.0E-03					-						na	2.0E-03
Benzo (a) anthracene ^c	0	-		na	1.8E-01			na	1.8E-01	-				-						na	1.8E-01
Benzo (b) fluoranthene ^C	0			na	1.8E-01			na	1.8E-01					-			-			na	1.8E-01
Benzo (k) fluoranthene ^C	0	-		na	1.8E-01			na	1.8E-01		***			_			-			na	1.8E-01
Benzo (a) pyrene ^C	0			na	1.8E-01			na	1.8E-01									-	**	na	1.8E-01
Bis2-Chloroethyl Ether C	0			na	5.3E+00	-		na	5.3E+00								-	-		na	5.3E+00
Bis2-Chloroisopropyl Ether	0	-		na	6.5E+04	-		na	6.5E+04		-									na	6.5E+04
Bis 2-Ethylhexyl Phthalate C	0			na	2.2E+01	-		na	2.2E+01					-	-				**	na	2.2E+01
Bromoform ^C	0			na	1.4E+03	-		na	1.4E+03	-		-				-		-		na	1.4E+03
Butylbenzylphthalate	0			na	1.9E+03	-		na	1.9E+03					-		-				na	1.9E+03
Cadmium	0	1.8E+00	6.6E-01	na		1.8E+00	6.6E-01	na	_									1.8E+00	6.6E-01	na	
Carbon Tetrachloride ^C	0			na	1.6E+01	-		na	1.6E+01					-	-			-		na	1.6E+01
Chlordane ^C	0	2.4E+00	4.3E-03	na	8.1E-03	2.4E+00	4.3E-03	na	8.1E-03		-							2.4E+00	4.3E-03	na	8.1E-03
Chloride	0	8.6E+05	2.3E+05	na	-	8.6E+05	2.3E+05	na				-		-				8.6E+05	2.3E+05	na	
TRC	0	1.9E+01	1.1E+01	na		1.9E+01	1.1E+01	na		-			-	_				1.9E+01	1.1E+01	na	
Chlorobenzene	0	-		na	1.6E+03			na	1.6E+03		_	_			-	-	-			na	1.6E+03

Parameter	Background		Water Quality Criteria				Wasteload	d Allocations		Antidegradation Baseline				Ar	tidegradatio	n Allocations		Most Limiting Allocations			
(ug/l unless noted)	Conc.	Acute		HH (PWS)	НН	Acute		HH (PWS)	нн	Acute	Chronic H		нн	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Chlorodibromomethane ^C	STREET, SQUARE, SQUARE									Acute	Chilonic I	III (F VV3)			CHIOING				Chronic		
Chloroform	0			na	1.3E+02	-		na	1.3E+02	-				-				-	-	na	1.3E+02
	0	-		na	1.1E+04	-	_	na	1.1E+04	-			-			-	-	-		na	1.1E+04
2-Chloronaphthalene	0	-	-	na	1.6E+03	-		na	1.6E+03	-			-	-						na	1.6E+03
2-Chlorophenol	0	-	-	na	1.5E+02		-	na	1.5E+02	-				-				-		na	1.5E+02
Chlorpyrifos	0	8.3E-02	4.1E-02	na		8.3E-02	4.1E-02	na	-	-				-				8.3E-02	4.1E-02	na	-
Chromium III	0	3.2E+02	4.2E+01	na	-	3.2E+02	4.2E+01	na	-				-	-			-	3.2E+02	4.2E+01	na	
Chromium VI	0	1.6E+01	1.1E+01	na	-	1.6E+01	1.1E+01	na	-					-				1.6E+01	1.1E+01	na	
Chromium, Total	0	-		1.0E+02				na						-						na	**
Chrysene ^C	0			na	1.8E-02	-	-	na	1.8E-02	-				-				-		na	1.8E-02
Copper	0	7.0E+00	5.0E+00	na		7.0E+00	5.0E+00	na						-				7.0E+00	5.0E+00	na	
Cyanide, Free	0	2.2E+01	5.2E+00	na	1.6E+04	2.2E+01	5.2E+00	na	1.6E+04	-			-	-			-	2.2E+01	5.2E+00	na	1.6E+04
DDD c	0			na	3.1E-03	-		na	3.1E-03	-				-				-		na	3.1E-03
DDE C	0	-		na	2.2E-03	-		na	2.2E-03	-						-				na	2.2E-03
DDT ^c	0	1.1E+00	1.0E-03	na	2.2E-03	1.1E+00	1.0E-03	na	2.2E-03	-				-		-		1.1E+00	1.0E-03	na	2.2E-03
Demeton	0	-	1.0E-01	na		-	1.0E-01	na				-				-		-	1.0E-01	na	
Diazinon	0	1.7E-01	1.7E-01	na		1.7E-01	1.7E-01	na								-		1.7E-01	1.7E-01	na	
Dibenz(a,h)anthracene ^C	0			na	1.8E-01	-		na	1.8E-01	-	-									na	1.8E-01
1,2-Dichlorobenzene	0			na	1.3E+03			na	1.3E+03	-			-							na	1.3E+03
1,3-Dichlorobenzene	0			na	9.6E+02	-		na	9.6E+02	-				-						na	9.6E+02
1,4-Dichlorobenzene	0			na	1.9E+02	-		na	1.9E+02	-					-	***				na	1.9E+02
3,3-Dichlorobenzidine ^C	0			na	2.8E-01			na	2.8E-01	-								-		na	2.8E-01
Dichlorobromomethane ^C	0			na	1.7E+02			na	1.7E+02											na	1.7E+02
1,2-Dichloroethane ^C	0			na	3.7E+02			na	3.7E+02			-	_							na	3.7E+02
1,1-Dichloroethylene	0			na	7.1E+03	_		na	7.1E+03	_									-	na	7.1E+03
1,2-trans-dichloroethylene	0			na	1.0E+04		-	na	1.0E+04											na	1.0E+04
2,4-Dichlorophenol	0			na	2.9E+02	_		na	2.9E+02	_										na	2.9E+02
2,4-Dichlorophenoxy																					
acetic acid (2,4-D)	0	-		na	-	-	-	na	-	-	-			-				-		na	
1,2-Dichloropropane ^C	0	-		na	1.5E+02	-		na	1.5E+02	-				-		-		-		na	1.5E+02
1,3-Dichloropropene C	0	-		na	2.1E+02	-	-	na	2.1E+02	-				-				-		na	2.1E+02
Dieldrin ^C	0	2.4E-01	5.6E-02	na	5.4E-04	2.4E-01	5.6E-02	na	5.4E-04	-				-				2.4E-01	5.6E-02	na	5.4E-04
Diethyl Phthalate	0			na	4.4E+04	-		na	4.4E+04					-				-		na	4.4E+04
2,4-Dimethylphenol	0			na	8.5E+02	-		na	8.5E+02	-	-				-	-		-		na	8.5E+02
Dimethyl Phthalate	0			na	1.1E+06			na	1.1E+06					-				-		na	1.1E+06
Di-n-Butyl Phthalate	0	-		na	4.5E+03	-	-	na	4.5E+03					-				-		na	4.5E+03
2,4 Dinitrophenol	0	-		na	5.3E+03	-		na	5.3E+03	-								-		na	5.3E+03
2-Methyl-4,6-Dinitrophenol	0			na	2.8E+02	-	-	na	2.8E+02	-			-							na	2.8E+02
2,4-Dinitrotoluene ^C	0	-		na	3.4E+01			na	3.4E+01					-				-	••	na	3.4E+01
Dioxin 2,3,7,8- tetrachlorodibenzo-p-dioxin	0		_	na	5.1E-08		_	na	5.1E-08						_		-	_		na	5.1E-08
1,2-Diphenylhydrazine ^C	0	_	_	na	2.0E+00	_	_	na	2.0E+00		-	_	_		_	_	-				2.0E+00
Alpha-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	na	8.9E+01	_	-	_	_		_	_		2.2E-01	5 6E 02	na	8.9E+01
Beta-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01			na			-	_	-	_	-		-	1	5.6E-02	na	
Alpha + Beta Endosulfan	0					2.2E-01	5.6E-02		8.9E+01		_	-	-		-	-		2.2E-01	5.6E-02	na	8.9E+01
1 '		2.2E-01	5.6E-02		9.05+01	2.2E-01			9.05+04	-	-	-		_				2.2E-01	5.6E-02		
Endosulfan Sulfate	0	9.65.02	3.65.03	na	8.9E+01		2 65 00	na	8.9E+01	-		-				-				na	8.9E+01
Endrin	0	8.6E-02	3.6E-02	na	6.0E-02	8.6E-02	3.6E-02	na	6.0E-02	_				-				8.6E-02	3.6E-02	na	6.0E-02
Endrin Aldehyde	0			na	3.0E-01			na	3.0E-01		-		-			-			**	na	3.0E-01

Parameter	Background		Water Qual	lity Criteria			Wasteload	Allocations			Antidegradat	ion Baseline		Ar	ntidegradatio	on Allocations			Most Limitin	ng Allocations	4
(ug/l unless noted)	Conc.	Acute	T	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	T	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
					2.1E+03	Acate	CHIOHIC		2.1E+03	Acate	- CHIOTIC			Acute	- CHIOTHO	-					2.1E+03
Ethylbenzene	0	-		na			-	na		-	-		-	_				-		na	
Fluoranthene	0	-		na	1.4E+02	-	-	na	1.4E+02		-	-	-	-		-				na	1.4E+02
Fluorene	0			na	5.3E+03	-	-	na	5.3E+03		-		-	-	-			-		na	5.3E+03
Foaming Agents	0		**	na		-		na	-											na	
Guthion	0	-	1.0E-02	na		-	1.0E-02	na										-	1.0E-02	na	
Heptachlor ^C	0	5.2E-01	3.8E-03	na	7.9E-04	5.2E-01	3.8E-03	na	7.9E-04									5.2E-01	3.8E-03	na	7.9E-04
Heptachlor Epoxide ^C	0	5.2E-01	3.8E-03	na	3.9E-04	5.2E-01	3.8E-03	na	3.9E-04			-						5.2E-01	3.8E-03	na	3.9E-04
Hexachlorobenzene ^C	0			na	2.9E-03			na	2.9E-03					-					**	na	2.9E-03
Hexachlorobutadiene ^C Hexachlorocyclohexane	0	-		na	1.8E+02			na	1.8E+02	-	-	-	-		-					na	1.8E+02
Alpha-BHC ^c Hexachlorocyclohexane	0	-		na	4.9E-02	-		na	4.9E-02	-		-	-	-	-				**	na	4.9E-02
Beta-BHC ^C Hexachlorocyclohexane	0		-	na	1.7E-01	-		na	1.7E-01	-		-	-	-		-				na	1.7E-01
Gamma-BHC ^c (Lindane)	0	9.5E-01	na	na	1.8E+00	9.5E-01	-	na	1.8E+00	-		-	-	-				9.5E-01		na	1.8E+00
Hexachlorocyclopentadiene	0	-		na	1.1E+03		-	na	1.1E+03							-				na	1.1E+03
Hexachloroethane ^C	0			na	3.3E+01			na	3.3E+01					-			-		**	na	3.3E+01
Hydrogen Sulfide	0		2.0E+00	na			2.0E+00	na						-		***			2.0E+00	na	
Indeno (1,2,3-cd) pyrene ^C	0	-		na	1.8E-01	-		na	1.8E-01				-	-		***				na	1.8E-01
Iron	0			na				na	-					_						na	
Isophorone ^C	0	-		na	9.6E+03	-		na	9.6E+03	-				_				-		na	9.6E+03
Kepone	0		0.0E+00	na		_	0.0E+00	na					_						0.0E+00	na	
Lead	0	4.9E+01	5.6E+00	na		4.9E+01	5.6E+00	na					_					4.9E+01	5.6E+00	na	
Malathion	0	-	1.0E-01	na		-	1.0E-01	na	_	_	-	_	_						1.0E-01	na	_
Manganese	0	_	1.02-01	na				na					-						1.02-01	na	_
	0										_	-	_			_	_	1.4E+00	7.7E-01		
Mercury		1.4E+00	7.7E-01		4.55.00	1.4E+00	7.7E-01		4.55.00	-		-		-		_					4.55.00
Methyl Bromide	0	-		na	1.5E+03	-		na	1.5E+03	-	-	-		-				_	-	na	1.5E+03
Methylene Chloride ^c	0	-		na	5.9E+03	-		na	5.9E+03	-				-		***				na	5.9E+03
Methoxychlor	0	-	3.0E-02	na	-	-	3.0E-02	na	-	-				-				-	3.0E-02	na	
Mirex	0		0.0E+00	na	-		0.0E+00	na		-				-					0.0E+00	na	
Nickel	0	1.0E+02	1.1E+01	na	4.6E+03	1.0E+02	1.1E+01	na	4.6E+03									1.0E+02	1.1E+01	na	4.6E+03
Nitrate (as N)	0	-	-	na		-		na						-	-	***		-		na	
Nitrobenzene	0			na	6.9E+02			na	6.9E+02											na	6.9E+02
N-Nitrosodimethylamine ^C	0	-		na	3.0E+01			na	3.0E+01											na	3.0E+01
N-Nitrosodiphenylamine ^C	0			na	6.0E+01	-		na	6.0E+01	_		-						-		na	6.0E+01
N-Nitrosodi-n-propylamine ^C	0			na	5.1E+00			na	5.1E+00	_										na	5.1E+00
Nonylphenol	0	2.8E+01	6.6E+00		_	2.8E+01	6.6E+00	na	_							-		2.8E+01	6.6E+00	na	
Parathion	0	6.5E-02	1.3E-02	na		6.5E-02	1.3E-02	na		_						-		6.5E-02	1.3E-02	na	-
PCB Total ^C	0	0.52-02	1.4E-02		6.4E-04	0.52-02	1.4E-02		6.4E-04								_		1.4E-02		6.4E-04
- 0	0			na				na		-		-			-	_		7.75.02		na	
Pentachlorophenol		7.7E-03	5.9E-03	na	3.0E+01	7.7E-03	5.9E-03	na	3.0E+01	_				-				7.7E-03	5.9E-03	na	3.0E+01
Phenol	0	-		na	8.6E+05	-	-	na	8.6E+05	-				-		-				na	8.6E+05
Pyrene	0	-		na	4.0E+03	-		na	4.0E+03					-				-		na	4.0E+03
Radionuclides Gross Alpha Activity	0			na		-		na	-	-			-	-			-			na	
(pCi/L)	0	-		na				na		_				_		_				na	
Beta and Photon Activity																					
(mrem/yr)	0			na			-	na		-			-	-		-				na	
Radium 226 + 228 (pCi/L)	0			na		-		na		-				-				-		na	**
Uranium (ug/l)	0	-		na		-		na						-	-			-		na	-

Parameter	Background						Wasteload Allocations					tion Baseline		А	ntidegradation	on Allocations		Most Limiting Allocations				
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн	
Selenium, Total Recoverable	0	2.0E+01	5.0E+00	na	4.2E+03	2.0E+01	5.0E+00	na	4.2E+03					-				2.0E+01	5.0E+00	na	4.2E+03	
Silver	0	1.0E+00		na	-	1.0E+00		na				-						1.0E+00		na		
Sulfate	0	-		na	-	-		na												na		
1,1,2,2-Tetrachioroethane ^C	0			na	4.0E+01			na	4.0E+01		**			-	-					na	4.0E+01	
Tetrachloroethylene ^C	0			na	3.3E+01			na	3.3E+01	-			-							na	3.3E+01	
Thallium	0	-		na	4.7E-01			na	4.7E-01											na	4.7E-01	
Toluene	0			na	6.0E+03			na	6.0E+03											na	6.0E+03	
Total dissolved solids	0		-	na				na				-				-			**	na		
Toxaphene ^C	0	7.3E-01	2.0E-04	na	2.8E-03	7.3E-01	2.0E-04	na	2.8E-03									7.3E-01	2.0E-04	na	2.8E-03	
Tributyltin	0	4.6E-01	7.2E-02	na	-	4.6E-01	7.2E-02	na										4.6E-01	7.2E-02	na		
1,2,4-Trichlorobenzene	0			na	7.0E+01			na	7.0E+01									-	**	na	7.0E+01	
1,1,2-Trichloroethane ^C	0			na	1.6E+02			na	1.6E+02											na	1.6E+02	
Trichloroethylene ^C	0	-		na	3.0E+02			na	3.0E+02					-						na	3.0E+02	
2,4,6-Trichlorophenol ^C	0			na	2.4E+01			na	2.4E+01			-		-				-		na	2.4E+01	
2-(2,4,5-Trichlorophenoxy) propionic acid (Silvex)	0			na			-	na	_			_		_	_			_	_	na	_	
Vinyl Chloride ^C	0		-	na	2.4E+01		_	na	2.4E+01	_	_	_	_		_	_	_			na	2.4E+01	
Zinc	0	6.5E+01	6.6E+01	na	2.6E+04	6.5E+01	6.6E+01	na	2.6E+04			-				-		6.5E+01	6.6E+01	na	2.6E+04	

Notes:

1. All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise

2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals

- 3. Metals measured as Dissolved, unless specified otherwise
- 4. "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens and Harmonic Mean for Carcinogens. To apply mixing ratios from a model set the stream flow equal to (mixing ratio 1), effluent flow equal to 1 and 100% mix.

Metal	Target Value (SSTV)
Antimony	6.4E+02
Arsenic	9.0E+01
Barium	na
Cadmium	3.9E-01
Chromium III	2.5E+01
Chromium VI	6.4E+00
Copper	2.8E+00
Iron	na
Lead	3.4E+00
Manganese	na
Mercury	4.6E-01
Nickel	6.8E+00
Selenium	3.0E+00
Silver	4.2E-01
Zinc	2.6E+01

Note: do not use QL's lower than the minimum QL's provided in agency quidance

	. A	В	С	D	E	F	G	Н	ł	,J	K	L	M	N	0
		Spread	dsheet f	or det	ermina	tion of	WET te	st endp	oints o	WET	limits				
1															
1		Excel 97			Acute End	Ipoint/Permi	t Limit	Use as LC ₅₀ i	n Special Con	dition, as Tl	Ja on DMR	MANAGEMENT AND STREET CHARLES PAR			
]		Revision Da													
1		File: WETLI	The second secon		ACUTE	100% =	NOAEC	LC ₅₀ =	NA	% Use as	NA	TUa			
4		(MIX.EXE requ	ired also)		ACUTE WL		0.0	Note: Inform	h = ==================================	1 :6 th	f th- d-t-			-	+
1					ACUTE WL	Aa	0.3	this TUa:	he permittee th	a limit may n				-	+
1								DISTOS.	11.0	The state of the s	Jount downing C	TATIOLE AL			1
1					Chronic En	dpoint/Permit	Limit	Use as NOEC	in Special Co	ondition, as	TUC on DMF	1			
]															
1					CHRONIC	1.46257468	-	NOEC =	69	% Use as	1.44	TU _c			
1					BOTH*	3.00000007		NOEC =		% Use as	2.94	TUc			
1	Enter data i	n the cells w	ith blue type:		AML	1.46257468	TU _c	NOEC =	69	% Use as	1.44	TU _c			
4	Entry Date:		04/00/45		ACUTE WE	A	2		Mate: Inform	the negotite -	that if the				-
1	Entry Date: Facility Nam	6.	01/09/15 Kinder Morgan	2	CHRONIC V		3	-	Note: Inform of the data ex			ean 1.0		-	-
1	VPDES Nun		VA0001988			acute expressed			a limit may res			110			
1	Outfall Num	ber:	1		Consumerous										
1					% Flow to b	e used from I	IIX.EXE		Diffuser /mod		?				
	Plant Flow:		0.056		400	04			Enter Y/N	n	.4				_
	Acute 1Q10 Chronic 7Q1			MGD MGD	100				Acute		:1			1	+-
t	OTHORNO 7 Q		-	IVIOD	100	70			Cilionic	-	.,				
			ulate CV? (Y/I		N	(Minimum of 1	0 data points,	same species,	needed)		Go to Page	2			
1	Are data ava	ailable to calc	ulate ACR? (Y/N	V)	N	(NOEC <lc50< td=""><td>, do not use g</td><td>reater/less than</td><td>data)</td><td></td><td>Go to Page</td><td>3</td><td></td><td></td><td></td></lc50<>	, do not use g	reater/less than	data)		Go to Page	3			
4															_
4	IWC _a		100	0/ Diest	flow/plant flow	** 1010	NOTE: IFAb.	e IWCa is >339	anneifu the					+	+
-	IWC _c		100		flow/plant flow			EC = 100% test						+	+
1	IVVO _C		100	70 Fidit	IIOW/plant iio	W+ rQ10	NOA	- 100% tes	veriapoint for	use				1	+-
1	Dilution, acu	ite	1	100/1	WCa			-		-					_
	Dilution, chr		1												
1															
-4	WLA _a					'Ua) X's Dilutio									
4	WLA _c					Uc) X's Dilution									_
4	WLA _{a,c}		3	ACR X's V	/LA _a - conver	ts acute WLA	o chronic unit	S							
4	ACP acuto	chronic ratio	10	I CEO/NOE	C (Default is	10 if data are	available us	e tables Page 3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					+	+-
1		ent of variation				re available, us								1	+
1	Constants		0.4109447												
1		eB	0.6010373												
4		eC eD	2,4334175			No. of sample	1	****	Delta di le la le	1-1-1-1-1-	the leavest			-	-
1		eD	2.4334175	Derault = 2	.43 (1 samp)	No. or sample	1		Daily Limit is cone LTAa,c and M			ACR		-	+
1	LTA _{a,c}		1.2328341	WLAa,c X'	s eA				a.rajo uno m	a soming it are				1	
1	LTA _c		0.6010373	WLAc X's		-	(25)				Rounded N	OEC's	%	1	
1	MDL** with I	LTA _{a,c}		TU _c	NOEC =	33,333333	(Protects fro	om acute/chron	ic toxicity)		NOEC =	34			
	MDL** with I		1.462574684	TU _c	NOEC =	68.372577	-	om chronic toxic			NOEC =	69			
1	AML with lov	west LTA	1.462574684	TU _c	NOEC =	68.372577	Lowest LTA				NOEC =	69			
1															
J	IF ONLY	ACUTE END	POINT/LIMIT IS	NEEDED,	CONVERT M	DL FROM TU _c	to TU _a								
1											Rounded LO		%		
4	MDL with LT		0.300000007		LC50 =	333.333325		Use NOAEC=			LC50 =	NA	%	12	
4	MDL with LT	Ac	0.146257468	TUa	LC50 =	683.725769	%	Use NOAEC=	100%		LC50 =	NA			
- 1															

	A B	T	T 0	1 -			L L		1		fvi	I N	1 0
9			0			- 5			3	- 1			
0	Page 2	- Follow the	direction	s to deve	lop a site s	pecific CV	(coefficien	t of variati	on)				
1					1		1						
2	IF YOU HA	AVE AT LEAST 10	DATA POI	NTS THAT		Vertebrate			Invertebrate				
3	ARE QUA	NTIFIABLE (NOT	"<" OR ">")			IC ₂₅ Data			IC ₂₅ Data				
1	FOR A SP	ECIES, ENTER T	HE DATA IN	EITHER		or			or				
5		"G" (VERTEBRAT				LC ₅₀ Data	LN of data		LC ₅₀ Data	LN of data			
		RTEBRATE). THE				*******			********				
		JP FOR THE CAL			1			1					
3		THE DEFAULT V			2			2					
	eB, AND e	C WILL CHANGE	IF THE 'CY	/ IS	3			3					
	ANYTHIN	G OTHER THAN	0.6.		4			4					
					5			5					
					6			6					
					7			7					
	Coefficien	t of Variation for e	ffluent tests		8			8					-
5					9			9					-
5	CV =	0.6	(Default 0.6	3)	10			10			 		-
					11			11					-
3	ð² =	0.3074847			12			12					
	ō =	0.554513029			13			13					
1					14			14					
	Using the	log variance to de			15			15					
		(P. 100, step 2			16			16					-
3		(97% probability		le	17			17			-		-
4	A =	-0.88929666			18			18					-
5	eA =	0.410944686			19			19			 -		
5					20			20	1		 		-
	Using the	log variance to de			0.0			01.5	WEED DAT		-		+
9	- 2	(P. 100, step 2			St Dev		NEED DATA		-	NEED DATA	+	-	+
9	ō42 =	0.086177696			Mean	0		Mean	0				
0	ō4 =	0.293560379			Variance	0	0.000000		0				
1	B =	-0.50909823			CV	0		CV	0				
2	eB =	0.601037335											
1													-
-	Using the	log variance to de									-		-
-		(P. 100, step 4	a of TSD)		1				-		-	-	+
2	-2		-		-				-		-	-	+
7	δ ² =	0.3074847											-
8	ð =	0.554513029							-		-		-
9	C =	0.889296658							-		 -	-	-
9	eC =	2.433417525			-				-			-	+
1	Haine #	lan variance (; t									 -	-	+
2	Using the	log variance to de			-	-					-	-	+
2		(P. 100, step 4		ne will one at t	ileahi atau as 1141	for 1 namele	les e eth	-	-		-	-	+
258	n =			er will most i	ikely stay as "1"	, for 1 sample/	ทางกเก.		-	-	-	-	+
S	ŏ _n ² =	0.3074847			-				-				-
6	ŏ _n =	0.554513029											
7	D =	0.889296658											
AB	eD =	2.433417525											
19													

														,	
4	Α .	8	C	D	E	F	G	Н	1	J.	K	L	9/3	N	0
10													-		-
Ш		Page 3 - F	ollow direc	ctions to	develop	a site speci	fic ACR (A	cute to Ch	ronic Ratio)					-
2															
								valid paired tes							
4	acute and ch	ronic, tested	at the same ter	nperature, s	ame species	. The chronic I	NOEC must b	e less than the	acute						
15	LC ₅₀ , since t	he ACR divid	es the LC ₅₀ by	the NOEC.	LC50's >1009	6 should not be	used.								
Ü															
7			Table 1. ACR	using Vert	ebrate data						Convert L	C ₅₀ 's and N	IOEC's to C	Chronic TU's	
B												for use in W	LA.EXE		
9										Table 3.		ACR used:	10		
20	Set #	LC ₅₀	NOEC	Test ACR	Logarithm	Geomean	Antilog	ACR to Use							
	1	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA			Enter LC ₅₀	TUc	Enter NOEC	TUc	
+	2	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				NO DATA	Eliter NOEC	NO DATA	\vdash
4										1		NO DATA		NO DATA	-
1	3	#N/A #N/A	#N/A #N/A	#N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	NO DATA		2		NO DATA	-	NO DATA	-
-	5	#N/A	#N/A #N/A	#N/A #N/A	#N/A	#N/A #N/A	#N/A	NO DATA		3		NO DATA	-	NO DATA	-
4	6	#N/A	#N/A	#N/A	#N/A #N/A	#N/A #N/A		NO DATA		5		NO DATA	-	NO DATA	-
D	7						#N/A						-	NO DATA	-
9	8	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A	#N/A #N/A	#N/A #N/A	NO DATA		6		NO DATA		NO DATA	
8	9	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A					NO DATA		NO DATA	-
1		#N/A #N/A	#N/A #N/A					NO DATA		8		NO DATA		NO DATA	-
4	10	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		9		NO DATA		NO DATA	-
1					ACD for	tohrata data:		0	-			NO DATA		NO DATA	-
1	THE RESERVE OF THE PARTY OF THE				ACK for ver	tebrate data:		0		11				NO DATA	-
4			Table 4 Deci	4.	Madabast	CD		0		12		NO DATA	-	NO DATA	-
1			Table 1. Resul		Vertebrate A					13		NO DATA	-	NO DATA	-
4			Table 2, Resul	t:	Invertebrate			0		14			-		-
4					Lowest ACF			Default to 10		15		NO DATA		NO DATA	-
4										16		NO DATA			-
4			Table 2. ACR	using Inve	rtebrate dat	a				17		NO DATA	-	NO DATA	-
4										18		NO DATA		NO DATA	-
4										19		NO DATA	-	NO DATA	-
1	Set #	LC ₅₀			Logarithm			ACR to Use		20		NO DATA		NO DATA	
2	1	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							_
9	2	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA						d, you need to	
Н	3	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				you get to TU		LC50,	_
15	4	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		enter it here	1	NO DATA	%LC ₅₀		1
16	5	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				NO DATA	TUa		
7	6	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
B	7	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				-			1
ă	8	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							1
á	9	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
1	10	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
1			0.07	21,075		21011	21,071					1			
1					ACR for ver	tebrate data:		0							
1			-		7.011 101 101	ob. are data.		1							
1								-				1			-
1												 	-		-
1				DULITIC	NI OFFI	C TO DECC	DAMAGAIG	-							-
1				DILUTIC	N SEKIE	S TO RECO	NIMIEND					-	-		
8		Table 4.	70.00			Monitoring		Limit							
						% Effluent	TUc	% Effluent	TUc						
9		Dilution ser	ies based on	data mea	1	100	1.0								
9			ies to use for		·	.00		69	1,4492754				1		1
9						0.5		0.8306624	1,4402104			-	1		-
9		Dilution for	ioi lo recomn	ienu.		0,5		0.0300024					-		-
9		Dilution fac			1			102.2				-			-
9 0 1 2 3								100.0	1.00		2				
9 1 2 3 4			ies to recomr	nend:		100.0	1.00								
9 1 2 3 4 5			ies to recomr	nend:		100.0 50.0	2.00	83.1	1,20						
9 0 1 2 3 4			ies to recomr	nend:					1.20						
9 0 11 2 3 4 5			ies to recomr	nend:		50.0 25.0	2.00 4.00	83,1 69,0	1.45						
9 0 1 2 3 4 5 6 6 7 7 8			ies to recomr	nend:		50.0 25.0 12.5	2.00 4.00 8.00	83.1 69.0 57.3	1.45 1.74						
9 0 1 2 3 4 5 6 6 6 6 6						50.0 25.0 12.5 6.25	2.00 4.00 8.00 16.00	83.1 69.0 57,3 47.6	1.45 1.74 2.10						
10 11 22 23 34 35 36 37 38			ies to recomr		d	50.0 25.0 12.5 6.25 3.12	2.00 4.00 8.00 16.00 32.05	83.1 69.0 57.3 47.6 39.5	1.45 1.74 2.10 2.53						
11 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10					d	50.0 25.0 12.5 6.25	2.00 4.00 8.00 16.00	83.1 69.0 57,3 47.6	1.45 1.74 2.10						

```
Cell: 19
           This is assuming that the data are Type 2 data (none of the data in the data set are censored - "<" or ">").
      Cell: K18
Comment: This is assuming that the data are Type 2 data (none of the data in the data set are censored - "<" or ">").
Comment: Remember to change the "N" to "Y" if you have ratios entered, otherwise, they won't be used in the calculations,
      Cell: C40
           If you have entered data to calculate an ACR on page 3, and this is still defaulted to "10", make sure you have selected "Y" in cell E21
Comment: If you have entered data to calculate an effluent specific CV on page 2, and this is still defaulted to "0.6", make sure you have selected "Y" in cell E20
      Cell: L48
           See Row 151 for the appropriate dilution series to use for these NOEC's
     Cell: G62
Comment:
           Vertebrates are:
           Pimephales promelas
           Oncorhynchus mykiss
           Cyprinodon variegatus
     Cell: J62
           Invertebrates are:
           Ceriodaphnia dubia
           Mysidopsis bahia
      Cell: C117
Comment: Vertebrates are:
           Pimephales promelas
           Cyprinodon variegatus
Comment: The ACR has been picked up from cell C34 on Page 1. If you have paired data to calculate an ACR, enter it in the tables to the left, and make sure you have a "Y" in cell E21 on Page 1. Otherwise, the default of 10 will be used to convert your acute data.
Comment: If you are only concerned with acute data, you can enter it in the NOEC column for conversion and the number calculated will be equivalent to the TUa. The calculation is the same: 100/NOEC = TUc or 100/LC50 = TUa.
      Cell: C138
Comment: Invertebrates are:
           Ceriodaphnia dubia
            Mysidopsis bahia
```

1/9/2015 12:26:52 PM

```
Facility = Kinder Morgan Terminal 2
Chemical = P. promelas
Chronic averaging period = 4
WLAa = 3
WLAc =
Q.L. = 1
# samples/mo. = 1
# samples/wk. = 1
```

Summary of Statistics:

```
# observations = 7

Expected Value = 1

Variance = .36

C.V. = 0.6

97th percentile daily values = 2.43341

97th percentile 4 day average = 1.66379

97th percentile 30 day average = 1.20605

# < Q.L. = 0

Model used = BPJ Assumptions, type 2 data
```

No Limit is required for this material

The data are:

1/9/2015 12:24:57 PM

```
Facility = Kinder Morgan Terminal 2
Chemical = C. dubia
Chronic averaging period = 4
WLAa = 3
WLAc =
Q.L. = 1
# samples/mo. = 1
# samples/wk. = 1
```

Summary of Statistics:

```
# observations = 7

Expected Value = 1

Variance = .36

C.V. = 0.6

97th percentile daily values = 2.43341

97th percentile 4 day average = 1.66379

97th percentile 30 day average = 1.20605

# < Q.L. = 0

Model used = BPJ Assumptions, type 2 data
```

No Limit is required for this material

The data are:

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY

13901 Crown Court

Woodbridge, VA 22193

(703) 583-3800

SUBJECT:

TOXICS MANAGEMENT PROGRAM (TMP) DATA REVIEW

Kinder Morgan Southeast Terminals LLC – Newington 2 (VA0001988)

REVIEWER:

Douglas Frasier

DATE:

5 March 2014

PREVIOUS REVIEW:

22 February 2013

DATA REVIEWED:

This review covers the third (3rd) annual acute toxicity test conducted in April 2013 at Outfall 001.

DISCUSSION:

The results of the acute toxicity test, along with results of all previous toxicity tests conducted since 1993 on effluent samples collected from Outfall 001, are summarized in Table 1.

The acute toxicity of the effluent sample was determined with a 48-hour static non-renewal acute toxicity test using C. dubia as the test species. The acute test yielded a LC_{50} of > 100% effluent; thus passing the acute toxicity criterion.

CONCLUSION:

The acute toxicity tests are valid and the test results acceptable. The test results indicate that the effluent from Outfall 001 exhibits no acute toxicity to the test species *C. dubia*.

BIOMONITORING RESULTS Kinder Morgan Southeast Terminals - Newington (VA0001988)

Table 1 Summary of Toxicity Test Results for Outfall 001

TEST DATE	TEST TYPE/ORGANISM	48-H LC ₅₀ (%)	% SURV	NOAEC (%)	TUa	REMARKS		
01/08/93	Acute D. pulex	>100	100					
01/07/94	Acute D. pulex	>100	100					
12/21/94	Acute C. dubia	>100	100					
12/06/95	Acute C. dubia	>100	100					
12/03/96	Acute C. dubia	INV.						
12/12/96	Acute C. dubia	< 10	0					
03/11/97	Acute C. dubia	>100	100					
11/25/97	Acute C. dubia	>100	100					
12/9/98	Acute C. dubia	>100	100					
	Pern	nit Reissued	March 27, 2	2000				
5/18/00	Acute C. dubia	>100	100			1st annual		
05/23/01	Acute C. dubia	>100	100			2nd annual wrong species		
10/16/01	Acute P. promelas	>100	95			Retest		
05/02/02	Acute C. dubia	>100	100			3rd annual		
05/02/03	Acute P. promelas	>100	100			4th annual		
05/05/04	Acute C. dubia	>100	100			5th annual		
	Pern	nit Reissued	March 28, 2	2005				
06/03/05	Acute P. promelas	>100	100	100	1	1 st annual		
06/13/06	Acute C. dubia	>100	100	100	1	2 nd annual		
08/08/07	Acute P. promelas	>100	100	100	1	3 rd annual		
05/07/08	Acute C. dubia	>100	100	100	1	4 th annual		
10/21/09	Acute P. promelas	>100	100	100	1	5 th annual		
		mit Reissued	20 April 20	010				
12/29/11	Acute P. promelas	>100	100	100	1	1 st annual		
04/20/12	Acute P. promelas	>100	100	100	1	2 nd annual		
04/25/13	Acute C. dubia	>100	100	100	1	3 rd annual		

ABBREVIATIONS:
% SURV – Percent survival in 100% effluent INV - Invalid

Public Notice - Environmental Permit

PURPOSE OF NOTICE: To seek public comment on a draft permit from the Department of Environmental Quality that will allow the release of treated industrial wastewater and industrial stormwater into a water body in Fairfax County, Virginia.

PUBLIC COMMENT PERIOD: October 3, 2015 to November 2, 2015

PERMIT NAME: Virginia Pollutant Discharge Elimination System Permit – Industrial Wastewater and Industrial Stormwater issued by DEQ, under the authority of the State Water Control Board

APPLICANT NAME, ADDRESS AND PERMIT NUMBER: Kinder Morgan Southeast Terminals LLC, 1000 Windward Concourse, Suite 450, Alpharetta, GA 30005, VA0001988

NAME AND ADDRESS OF FACILITY: Kinder Morgan Southeast Terminals Newington 2, 8206 Terminal Road, Lorton, VA 22079

PROJECT DESCRIPTION: Kinder Morgan Southeast Terminals LLC has applied for a reissuance of a permit for the private Kinder Morgan Southeast Terminals Newington 2. The applicant proposes to release treated industrial wastewater and industrial stormwater at a rate of 0.03 million gallons per day into a water body. The facility proposes to release the treated industrial wastewater and industrial stormwater in an unnamed tributary to Accotink Creek in Fairfax County in the Potomac River watershed. A watershed is the land area drained by a river and its incoming streams. The permit will limit the following pollutants to amounts that protect water quality: pH, Total Suspended Solids, and Total Petroleum Hydrocarbons. The permit will monitor the following pollutants to protect water quality: Total Nitrogen, Total Kjeldahl Nitrogen, Nitrate+Nitrate, Total Phosphorus, and Acute Toxicity.

HOW TO COMMENT AND/OR REQUEST A PUBLIC HEARING: DEQ accepts comments and requests for public hearing by hand-delivery, e-mail, fax or postal mail. All comments and requests must be in writing and be received by DEQ during the comment period. Submittals must include the names, mailing addresses and telephone numbers of the commenter/requester and of all persons represented by the commenter/requester. A request for public hearing must also include: 1) The reason why a public hearing is requested. 2) A brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit. 3) Specific references, where possible, to terms and conditions of the permit with suggested revisions. A public hearing may be held, including another comment period, if public response is significant, based on individual requests for a public hearing, and there are substantial, disputed issues relevant to the permit.

CONTACT FOR PUBLIC COMMENTS, DOCUMENT REQUESTS AND ADDITIONAL INFORMATION: The public may review the draft permit and application at the DEQ-Northern Regional Office by appointment, or may request electronic copies of the draft permit and fact sheet.

Name: Susan Mackert